Constraining subcategory-
sensitive MATCH constraints

Nicholas Van Handel
LSA 2021

Match constraints

e Syntax-to-prosody: Match-SP(XP, ¢); “MatchXP”

- “Assign a violation for each XP not matched by a ¢”

WP ¢
N PN
W YP —_ W O
PN P
Y ZP Y ¢

| |
Z Z

Match constraints

* Prosody-to-syntax: Match-PS(¢, XP); “Match-¢”

- “Assign a violation for each ¢ not matched by an XP”

WP ¢
N PN
W YP “«— W o
PN P
Y ZP Y ¢

| |
Z Z

Prosodic subcategories

* Recursive constituents organized into subcategories
based on dominance relations (i & Mester 2012, i.a.)

e Processes can be sensitive to different levels of recursive
constituents

1

- } (P[+max. —min]| maximal pl'Oj ecti on Of 0

non-minimal projections of ¢ @™ l\
= - 1 - - - - ~
~ 0. } plmax min] intermediate projections of @

non-maximal projections of ¢ @l™] < I\
0. } el maxFmin] myinimal projection of @

(6))

Subcategory-sensitive
constraints

e |shihara (2014): MatchSP(XPMax] = ¢l+Max])
- XPMaxl: each maximal XP needs a correspondent
- ¢l+Maxl; each correspondent must be a maximal ¢

* Prioritize matching a particular subset of XPs

a. |WP o. o) C. ()
W/\YP W/\ T
¢
PN PN W Y 2
Y ZzZP Y
| |
Z Z

(Ito and Mester 2017, Kalivoda 2018, Bellik et al 2020, i.a.)
5

Subcategory-sensitive
constraints

e |to & Mester (2013): MatchSP(XPI-Minl | &)
- XPIMinl; each non-minimal XP needs a correspondent

- ¢: each correspondent must be a ¢ (of any subcategory)

a b. [o] c
Yo ozp Y o ‘O
é é

The Problem

Without limits, this theory predicts a proliferation of Match constraints
XP (Argument 1):

- Maximal: [+, -, unspecified]

- Minimal: [+, -, unspecified]

¢ (Argument 2):

- Maximal: [+, -, unspecified]

- Minimal: [+, -, unspecified]

34 = 81 MatchSP constraints!

The Problem

* Many logically possible constraints are suspect
- MatchSP(XPIMinl - gl+Min])

* “Assign one violation for each non-minimal XP that is
not matched by a minimal ¢”

» (Certain combinations enforce deviations from the syntax

- “Anti-Match”

- It is more harmonic to be less faithful to syntax!

38

The Problem

e Compare MatchSP(XP, ¢) and MatchSP(XPI-Minl ' ¢pl+Minl)

e MatchSP(XP, ¢) prefers mapping each XP onto its own ¢

Pwp
—_—
. W o]

The Problem

e Compare MatchSP(XP, ¢) and MatchSP(XPI-Minl ' ¢pl+Minl)
e MatchSP(XPI-Mnl ¢pl+Minl) cares only about [-Min] WP

e Failing to map YP to a ¢ ensures that ¢pwe iIs minimal

Pwp
W YP W Y

10

The Problem

* Anti-Match: flattening constraint
e [-Min] XPs map to [+Min] ¢ by ignoring bottom layer of structure

- Flattening constraints prefer candidates that violate MatchSP

WP
/\YP MatchSP MatchSP A MatchPS

O xpemin M) (XP @) (XP, @)

11

The Problem

Match constraints are supposed to enforce syntax-prosody
correspondence

- Isomorphic structures are more marked according to
Anti-Match constraints

How widespread is Anti-Match behavior?
- Which feature specifications cause Anti-Match behavior?

- Can we find any generalizations such that we can
exclude these specifications from our theory?

12

Match constraints in SPOT

. N4 _ ® Custom Match(Syntax—Prosody) (i)
° Reca”' 3 — 81 MatChSP Create your own custom Match constraint.
constraints cp 7 XP 50
_ Enforce Match only for syntactic nodes
e |Large constraint space + large that are...
candidate set: not feasible by lexical ®
hand overtly headed

(i)
+ B maximal ()
®

& minimal

e Use SPOT to determine when | |
" Prosodic categories must be...
subcategory-sensitive Match . ® maximal ®
conflicts with MatchSP and ary © minimal ®
MatchPS

13

Preview of results

 Two types of Anti-Match:
1. Flattening
- Favor ignoring a level in the syntax
- Conflict with MatchSP(XP, ¢)
2. Expansion
- Favor adding levels not present in the syntax

- Conflict with MatchPS(XP, ¢)

14

Preview of results

 Two combinations of specifications cause Anti-Match:
- Conflicting: MatchSP(XPIMinl gl+Min])
- Only on ¢: MatchSP(XP, ¢l+Min])

 Two configurations avoid Anti-Match
- ldentical: MatchSP(XPLMin] | ¢pl+Min])

- Only on XP: MatchSP(XPMinl, ¢)

15

CON(s)

Permuted CONSs to test predictions of different Match constraints
Generated typology of each CON

Three constraints per typology:

- 1 subcategory-sensitive MatchSP

- General MatchSP(XP, ¢)

- General MatchPS(¢p, XP)

Restricted to constraints specified for [Max] or [Min], not both

16

GEN: Inputs

 Automatically generated 1-4 1.[ox
word inputs in SPOT
1. {X Y}
+ All logically possible LAl
recursive nestings 1. XY Z]}
2. {[XTY 2]}
- No unary XPs 1. [{W [X [Y Z]]}
2. {WIIX Y] Z]}
3. {IW XT[Y Z]}
4. {IW [XTY Z]]
5. [{IWIIXY]Z]
6. | {[[W X][Y Z]

17

GEN: Output

GEN: Output parameters

* Weak layering

No prosodic recursion (Non-Recursivity)

. Enforce headedness
- Allow recursion

No level-skipping (Exhaustivity)

All intermediate nodes are branching

- Allow non-exhaustive
parsing

Restrict maximum number of branches

Allow movement

© 60 6 6 6 ©

— Prosodic categories ~

Root prosodic tree in
o] ¢ w

Intermediate nodes are
I 00 w

Prosodic terminals are
® ow Ft

©

18

1. Conflicting Specifications

e Constraints with opposite [Min]/[Max] values, e.g.,
- Match(XPIMinl» gpl+Min)): Flattening
- Match(XPL+Minl ¢l-Min])
- Match(XPMax] gl+Max))

- Match(XPiMaxl ¢pl-Max])

19

MatchSP(XP+Min] | ¢[-Min])

e |somorphic mapping violates MatchSP(XPL+Minl - ¢gl-Min])

e [+Min] YP’s correspondent, ¢vp, is also [+Min]

20

MatchSP(XP+Min] | ¢[-Min])

* MatchSP(XPMinl - cpl-Min))

- [+Min] YP can be mapped to a [-Min] ¢ by placing a ¢ around Z

21

MatchSP(XP+Min] | ¢[-Min])

* Expansion constraint
e [+Min] XPs map to [-Min] ¢ by adding another layer of structure

- Expansion constraints prefer candidates that violate MatchPS

N MatchSP MatchSP MatchPS
AN (XPEMinl - g[-Mini) XP, §) XP, §)
Y

bwp
& W (YP) =
Y Z

dwp
PN
W oy *

¢ o
v ()

22

Summary

* Anti-Match arises when a constraint calls for a change in dominance relations
e MatchSP(XP[-Min] ¢pl+Minl): flattening

- To go from [-Min] to [+Min]: ignore structure!

XP Pxp
NN —_— PN
X YP X Y
I
Y

e MatchSP(XPi+Minl | p[-Min)): expansion

- To go from [+Min] to [-Min]: add structure!

XP bxp
/\ /\
X YP —l X (pyp
PN PN
Y Z Y ()

23

1. Conflicting Specifications

 General problem: similar patterns seen with [+Max], e.g.,
- MatchSP(XP[I-Minl - ¢pl+Minl). Flattening
- MatchSP(XP+Min] - pl-Min]): Expansion
- MatchSP(XPI-Max] | ¢pl+Max]): Flattening

- MatchSP(XPI+Max] - ¢pl-Max]): Expansion

24

2. Specifications on ¢

Problem: Anti-Match generalizes beyond obvious
conflicts in specifications, e.g.,

- MatchSP(XP, ¢[-Minl)
- MatchSP(XP, ¢l+Min))
- MatchSP(XP, ¢pl-Max])

- MatchSP(XP, ¢pl+Max)

25

MatchSP(XP, ¢pl-Min])

* Isomorphic mapping violates MatchSP(XP, ¢l-Min)
e WP’s correspondent, dwe, is [-Min]:

e YP’s correspondent, dvp, is [+Min]: X

o |dwe
W — W |Pve

20

MatchSP(XP, ¢pl-Min])

* Again, expansion preferred over isomorphy to make ¢ve [-Min]
e |Implicit call for a reversal in dominance relations
- [+Min] YP is included in the set of all XPs

e Anti-Match arises even when specifications aren't in apparent
conflict

Pwp
W — W

27

2. Specifications on ¢

 Conclusion: Anti-Match behavior generalizes across
constraints with specifications on ¢, e.g.,

- Match(XP, ¢pl-Minl); Expansion
- Match(XP, ¢pl-Max]): Expansion

- Match(XP, ¢pltMax])). Flattening

28

3. Specifications on XP

 No Anti-Match when specifications are only on XP, e.qg.,
- Match(XPI-Minl| o)
- Match(XPMinl - ¢)
- Match(XP[-Max]|)

- Match(XPEMax, ¢b)

29

MatchSP(XPI-Minl| ¢)

e MatchSP(XPIMinl @) (to and Mester, 2013)
- Satisfied by isomorphic parse (a)

- Also satisfied by non-isomorphic parses like (b) , as long as non-
minimal XPs have a corresponding ¢

e Crucially, this constraint does not prefer non-isomorphic (b)

W W 8] V>
> S/\ >
¢

Y 7 Y Z

30

MatchSP(XPI-Minl| ¢)

e Special-general relationship:

- MatchSP(XP[-Minl| ¢) assigns a subset of violations assigned by MatchSP(XP, ¢)
* First argument delimits the set of XPs the Match constraint cares about

- MatchSP(XP, ¢) cares about all XPs: WP, SP, YP

- MatchSP(XP[-Minl| ¢) cares about XP[IMinl| a subset: WP, SP

MatchSP MatchSP MatchPS

welWsrlS velY 2l pewin,) xR @) (xR 0)
& 3 (W (S (Y 2))
' Isomorphic
b WY 2) *
" Partial Flattening (YP)
c (WSY 2) * **

Flattened (SP) (SP, YP)

31

3. Specifications on XP

e All constraints with specifications on XP are in this
special-general relationship with MatchSP

 Favor isomorphism, e.g.
- Match(XPMinl |)
- Match(XP=Minl - ¢)
- Match(XP[-Max]| ¢)

- Match(XP+Max])

32

4. ldentical specifications

* Avoid Anti-Match, but not in a special-general relationship
with MatchSP, e.g.,

- Match(XP[+Min], ¢[+Min])
- Match(XPLMin, ghl-Mini)
- Match(XP[H\/laX], ¢[+Max])

- Match(XPI-Max] ¢pl-Max])

33

MatchSP(XP[+Minl | gl+Min])

° MatchSP(XPHMin], q)[+Min])
- Satisfied by isomorphic parse (a)
- NOT satisfied by (b), because ®vp is [-Min]

e MatchSP(XPI+Min] pl+Min]) works to preserve dominance relations

WP a. dwp - % dwp
W - EE— W ! —CDY
N
Y Z Y Z

34

MatchSP(XP[+Minl | gl+Min])

* No special-general relationship

e Cand C only violates MatchSP(XPL+Minl - ¢pl+Min])
- MatchSP(XPIMinl p+Minl) requires [+Min] ¢pyp
- MatchSP(XP,) is happy to have any ¢pvyp

e |dentical specifications are dominance-preserving

MatchSP MatchSP = MatchPS

we[W yelY Z]] (XPL+Min] - chl+Min]) XP, ®) XP,)
(W (Y 2))
B Isomorphic
) WY 2 *)
' Flattened (YP) (YP)
. W) ”

Expanded (YP)

35

4. ldentical specifications

* Avoid Anti-Match and preserve dominance relations, e.q.,
- Match(XPI-Min] gl-Minl)
- Match(XPMin] ¢pl+Min])
- Match(XP[-Max] = ¢l-Max])

- Match(XP[+Max], ¢[+I\/Iax])

36

Conclusion

* Anti-Match: specifications conflict or only on ¢
- Flattening: [+Max] or [+Min] on ¢
- Expansion: [-Max] or [-Min] on ¢

e Lawful Match:
- Specialized: specification only on XP

- Dominance-preserving: identical specifications

37

Conclusion

* Anti-Match: when specifications conflict or are only on ¢
 Should be excluded from the theory
- Mapping should enforce isomorphism, not prevent it

- Weird theory of markedness: penalize being too faithful
to the syntactic input

- Deviations should be driven instead by well known
prosodic constraints (e.g., binarity, sisterhood)

38

Conclusion

Limit subcategory-sensitive constraints to:

- Specialized, e.g., MatchSP(XPMinl ")

- Dominance-preserving, e.g., MatchSP(XP+Min] - ¢pl+Min])
Restriction takes us from 81 to 17 MatchSP constraints

Whether all 17 are still needed is an open question, but
we’ve narrowed the space of constraints considerably

39

Conclusion

* Theories with prosodic recursion and subcategories have
a large search space for both candidates and constraints

e SPOT is particularly well-suited to developing these
theories

- Theory comparison would be labor-intensive without
automatic generation and evaluation of candidates

- We can easily test different constraint definitions

40

Thank you!

Junko Ito, Armin Mester
Ryan Bennett, Amanda Rysling

Jenny Bellik, Nick Kalivoda, Richard Bibbs

This research was supported by the National Science
Foundation, Award #1749368.

41

Appendix

Binary vs. privative features

* Greater restrictions with privative features

- [Min] vs. unspecified

- [Max] vs. unspecified

e 24 =16 constraints, not 81

* No need to stipulate that [+Max] can’t be paired with [-Max]

e But, still need to stipulate that you can’t have specifications
only on ¢

43

Binary vs. privative features

e Potential difficulty: previous analyses using [-Min] / [-Max]
- lrish: LH phrase accent at left edge of ¢I-Minl Einer, 2015)
- Basque: ¢-Minl is domain of pitch reset Eiordieta, 2015)

- BinMaxHead(wl+Max, -Minl) i and Mester, 2021)

44

Eliminate subcategory-
sensitive Match?

Subcategory-sensitive constraints can sometimes be replaced by
other constraints

lto and Mester (2013, 2016) on Japanese

- MatchSP(XPIMinl) —> MatchPS(¢p,XP)

Bellik and Kalivoda (2020) on Irish

- MatchSP(XPI-Minl) —> MatchSP(XPovertHead, D)
Van Handel (ms) on ltalian

- MatchSP(XPl+Mad ¢hi+Max)) — > MatchPS(d,XP)

45

Specialized vs. Dominance-
preserving

* |s it crucial that subcategory-sensitive constraints
preserve dominance relations?

e E.g., MatchSP(XPl+Max] pl+Max]) vs, MatchSP(XPL+Max])

e Only MatchSP(XP+Max] ¢pl+Max]) prefers (a) to (b)

Clause a 1 D. i
WP Y|P Pdwp Pvp P
| | | dwp Pyp
W Y W Y | |

46

Specialized vs. Dominance-
preserving

 Empirical work necessary to know whether both
Specialized and Dominance-preserving are necessary

e Allowing for only Specialized or only Dominance-
preserving reduces the set to 9 constraints

47

Two-Word XP Inputs

e Inputs with two-word XPs (rather than unary XPs) ensure we include the
configuration in which a [+Min] ¢ can become [-Min]

e Below, if YP consisted solely of Y, it wouldn't be possible to create a
[-Min] dvp

- Assuming non-vacuous recursion, i.e., *((Y))

e Two-word [+Min] YP can become [-Min] by putting either Y or Z into its
own @

48

