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Match constraints

e Syntax-to-prosody: Match-SP(XP, ¢); “MatchXP”

- “Assign a violation for each XP not matched by a ¢”
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Match constraints

* Prosody-to-syntax: Match-PS(¢, XP); “Match-¢”

- “Assign a violation for each ¢ not matched by an XP”
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Prosodic subcategories

* Recursive constituents organized into subcategories
based on dominance relations (i & Mester 2012, i.a.)

e Processes can be sensitive to different levels of recursive
constituents
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Subcategory-sensitive
constraints

e |shihara (2014): MatchSP(XPMax] = ¢l+Max])
- XPMaxl: each maximal XP needs a correspondent
- ¢l+Maxl; each correspondent must be a maximal ¢

* Prioritize matching a particular subset of XPs
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(Ito and Mester 2017, Kalivoda 2018, Bellik et al 2020, i.a.)
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Subcategory-sensitive
constraints

e |to & Mester (2013): MatchSP(XPI-Minl | &)
- XPIMinl; each non-minimal XP needs a correspondent

- ¢: each correspondent must be a ¢ (of any subcategory)
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The Problem

Without limits, this theory predicts a proliferation of Match constraints
XP (Argument 1):

- Maximal: [+, -, unspecified]

- Minimal: [+, -, unspecified]

¢ (Argument 2):

- Maximal: [+, -, unspecified]

- Minimal: [+, -, unspecified]

34 = 81 MatchSP constraints!



The Problem

* Many logically possible constraints are suspect
- MatchSP(XPIMinl - gl+Min])

* “Assign one violation for each non-minimal XP that is
not matched by a minimal ¢”

» (Certain combinations enforce deviations from the syntax

- “Anti-Match”

- It is more harmonic to be less faithful to syntax!
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The Problem

e Compare MatchSP(XP, ¢) and MatchSP(XPI-Minl ' ¢pl+Minl)

e MatchSP(XP, ¢) prefers mapping each XP onto its own ¢

Pwp
—_—
. W o]



The Problem

e Compare MatchSP(XP, ¢) and MatchSP(XPI-Minl ' ¢pl+Minl)
e MatchSP(XPI-Mnl ¢pl+Minl) cares only about [-Min] WP

e Failing to map YP to a ¢ ensures that ¢pwe iIs minimal
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The Problem

* Anti-Match: flattening constraint
e [-Min] XPs map to [+Min] ¢ by ignoring bottom layer of structure

- Flattening constraints prefer candidates that violate MatchSP

WP
/\YP MatchSP MatchSP A MatchPS

O xpemin M) (XP @) (XP, @)

11



The Problem

Match constraints are supposed to enforce syntax-prosody
correspondence

- Isomorphic structures are more marked according to
Anti-Match constraints

How widespread is Anti-Match behavior?
- Which feature specifications cause Anti-Match behavior?

- Can we find any generalizations such that we can
exclude these specifications from our theory?
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Match constraints in SPOT

. N4 _ ® Custom Match(Syntax—Prosody) (i)
° Reca”' 3 — 81 MatChSP Create your own custom Match constraint.
constraints cp 7 XP 50
_ Enforce Match only for syntactic nodes
e |Large constraint space + large that are...
candidate set: not feasible by lexical ®
hand overtly headed
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Preview of results

 Two types of Anti-Match:
1. Flattening
- Favor ignoring a level in the syntax
- Conflict with MatchSP(XP, ¢)
2. Expansion
- Favor adding levels not present in the syntax

- Conflict with MatchPS(XP, ¢)
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Preview of results

 Two combinations of specifications cause Anti-Match:
- Conflicting: MatchSP(XPIMinl gl+Min])
- Only on ¢: MatchSP(XP, ¢l+Min])

 Two configurations avoid Anti-Match
- ldentical: MatchSP(XPLMin] | ¢pl+Min])

- Only on XP: MatchSP(XPMinl, ¢)
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CON(s)

Permuted CONSs to test predictions of different Match constraints
Generated typology of each CON

Three constraints per typology:

- 1 subcategory-sensitive MatchSP

- General MatchSP(XP, ¢)

- General MatchPS(¢p, XP)

Restricted to constraints specified for [Max] or [Min], not both
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GEN: Inputs

 Automatically generated 1-4 1.[ox
word inputs in SPOT
1. {X Y}
+ All logically possible LAl
recursive nestings 1. XY Z]}
2. {[XTY 2]}
- No unary XPs 1. [{W [X [Y Z]]}
2. {WIIX Y] Z]}
3. {IW XT[Y Z]}
4. {IW [XTY Z]]
5. [{IWIIXY]Z]
6. | {[[W X][Y Z]
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GEN: Output

GEN: Output parameters

* Weak layering

No prosodic recursion (Non-Recursivity)

. Enforce headedness
- Allow recursion

No level-skipping (Exhaustivity)

All intermediate nodes are branching

- Allow non-exhaustive
parsing

Restrict maximum number of branches

Allow movement
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1. Conflicting Specifications

e Constraints with opposite [Min]/[Max] values, e.g.,
- Match(XPIMinl» gpl+Min)): Flattening
- Match(XPL+Minl ¢l-Min])
- Match(XPMax] gl+Max))

- Match(XPiMaxl ¢pl-Max])
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MatchSP(XP+Min] | ¢[-Min])

e |somorphic mapping violates MatchSP(XPL+Minl - ¢gl-Min])

e [+Min] YP’s correspondent, ¢vp, is also [+Min]
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MatchSP(XP+Min] | ¢[-Min])

* MatchSP(XPMinl - cpl-Min))

- [+Min] YP can be mapped to a [-Min] ¢ by placing a ¢ around Z
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MatchSP(XP+Min] | ¢[-Min])

* Expansion constraint
e [+Min] XPs map to [-Min] ¢ by adding another layer of structure

- Expansion constraints prefer candidates that violate MatchPS
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Summary

* Anti-Match arises when a constraint calls for a change in dominance relations
e MatchSP(XP[-Min] ¢pl+Minl): flattening

- To go from [-Min] to [+Min]: ignore structure!
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Y

e MatchSP(XPi+Minl | p[-Min)): expansion

- To go from [+Min] to [-Min]: add structure!
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1. Conflicting Specifications

 General problem: similar patterns seen with [+Max], e.g.,
- MatchSP(XP[I-Minl - ¢pl+Minl). Flattening
- MatchSP(XP+Min] - pl-Min]): Expansion
- MatchSP(XPI-Max] | ¢pl+Max]): Flattening

- MatchSP(XPI+Max] - ¢pl-Max]): Expansion
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2. Specifications on ¢

Problem: Anti-Match generalizes beyond obvious
conflicts in specifications, e.g.,

- MatchSP(XP, ¢[-Minl)
- MatchSP(XP, ¢l+Min))
- MatchSP(XP, ¢pl-Max])

- MatchSP(XP, ¢pl+Max)
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MatchSP(XP, ¢pl-Min])

* Isomorphic mapping violates MatchSP(XP, ¢l-Min)
e WP’s correspondent, dwe, is [-Min]:

e YP’s correspondent, dvp, is [+Min]: X

o |dwe
W — W |Pve
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MatchSP(XP, ¢pl-Min])

* Again, expansion preferred over isomorphy to make ¢ve [-Min]
e |Implicit call for a reversal in dominance relations
- [+Min] YP is included in the set of all XPs

e Anti-Match arises even when specifications aren't in apparent
conflict
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2. Specifications on ¢

 Conclusion: Anti-Match behavior generalizes across
constraints with specifications on ¢, e.g.,

- Match(XP, ¢pl-Minl); Expansion
- Match(XP, ¢pl-Max]): Expansion

- Match(XP, ¢pltMax])). Flattening
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3. Specifications on XP

 No Anti-Match when specifications are only on XP, e.qg.,
- Match(XPI-Minl| o)
- Match(XPMinl - ¢)
- Match(XP[-Max]| )

- Match(XPEMax, ¢b)
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MatchSP(XPI-Minl| ¢)

e MatchSP(XPIMinl @) (to and Mester, 2013)
- Satisfied by isomorphic parse (a)

- Also satisfied by non-isomorphic parses like (b) , as long as non-
minimal XPs have a corresponding ¢

e Crucially, this constraint does not prefer non-isomorphic (b)
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MatchSP(XPI-Minl| ¢)

e Special-general relationship:

- MatchSP(XP[-Minl| ¢) assigns a subset of violations assigned by MatchSP(XP, ¢)
* First argument delimits the set of XPs the Match constraint cares about

- MatchSP(XP, ¢) cares about all XPs: WP, SP, YP

- MatchSP(XP[-Minl| ¢) cares about XP[IMinl| a subset: WP, SP

MatchSP MatchSP MatchPS

welWsrlS velY 2l pewin, ) xR @) (xR 0)
& 3 (W (S (Y 2))
' Isomorphic
b WY 2) *
" Partial Flattening (YP)
c (WSY 2) * **

Flattened (SP) (SP, YP)
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3. Specifications on XP

e All constraints with specifications on XP are in this
special-general relationship with MatchSP

 Favor isomorphism, e.g.
- Match(XPMinl | )
- Match(XP=Minl - ¢)
- Match(XP[-Max]| ¢)

- Match(XP+Max] )
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4. ldentical specifications

* Avoid Anti-Match, but not in a special-general relationship
with MatchSP, e.g.,

- Match(XP[+Min], ¢[+Min])
- Match(XPLMin, ghl-Mini)
- Match(XP[H\/laX], ¢[+Max])

- Match(XPI-Max] ¢pl-Max])
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MatchSP(XP[+Minl | gl+Min])

° MatchSP(XPHMin], q)[+Min])
- Satisfied by isomorphic parse (a)
- NOT satisfied by (b), because ®vp is [-Min]

e MatchSP(XPI+Min] pl+Min]) works to preserve dominance relations
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MatchSP(XP[+Minl | gl+Min])

* No special-general relationship

e Cand C only violates MatchSP(XPL+Minl - ¢pl+Min])
- MatchSP(XPIMinl p+Minl) requires [+Min] ¢pyp
- MatchSP(XP, ) is happy to have any ¢pvyp

e |dentical specifications are dominance-preserving

MatchSP MatchSP = MatchPS

we[W yelY Z]] (XPL+Min] - chl+Min]) XP, ®) XP, )
(W (Y 2))
B Isomorphic
) WY 2 * )
' Flattened (YP) (YP)
. W) ”

Expanded (YP)
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4. ldentical specifications

* Avoid Anti-Match and preserve dominance relations, e.q.,
- Match(XPI-Min] gl-Minl)
- Match(XPMin] ¢pl+Min])
- Match(XP[-Max] = ¢l-Max])

- Match(XP[+Max], ¢[+I\/Iax])
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Conclusion

* Anti-Match: specifications conflict or only on ¢
- Flattening: [+Max] or [+Min] on ¢
- Expansion: [-Max] or [-Min] on ¢

e Lawful Match:
- Specialized: specification only on XP

- Dominance-preserving: identical specifications
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Conclusion

* Anti-Match: when specifications conflict or are only on ¢
 Should be excluded from the theory
- Mapping should enforce isomorphism, not prevent it

- Weird theory of markedness: penalize being too faithful
to the syntactic input

- Deviations should be driven instead by well known
prosodic constraints (e.g., binarity, sisterhood)
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Conclusion

Limit subcategory-sensitive constraints to:

- Specialized, e.g., MatchSP(XPMinl " )

- Dominance-preserving, e.g., MatchSP(XP+Min] - ¢pl+Min])
Restriction takes us from 81 to 17 MatchSP constraints

Whether all 17 are still needed is an open question, but
we’ve narrowed the space of constraints considerably
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Conclusion

* Theories with prosodic recursion and subcategories have
a large search space for both candidates and constraints

e SPOT is particularly well-suited to developing these
theories

- Theory comparison would be labor-intensive without
automatic generation and evaluation of candidates

- We can easily test different constraint definitions
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Appendix



Binary vs. privative features

* Greater restrictions with privative features

- [Min] vs. unspecified

- [Max] vs. unspecified

e 24 =16 constraints, not 81

* No need to stipulate that [+Max] can’t be paired with [-Max]

e But, still need to stipulate that you can’t have specifications
only on ¢
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Binary vs. privative features

e Potential difficulty: previous analyses using [-Min] / [-Max]
- lrish: LH phrase accent at left edge of ¢I-Minl Einer, 2015)
- Basque: ¢-Minl is domain of pitch reset Eiordieta, 2015)

- BinMaxHead(wl+Max, -Minl) i and Mester, 2021)
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Eliminate subcategory-
sensitive Match?

Subcategory-sensitive constraints can sometimes be replaced by
other constraints

lto and Mester (2013, 2016) on Japanese

- MatchSP(XPIMinl ) —> MatchPS(¢p,XP)

Bellik and Kalivoda (2020) on Irish

- MatchSP(XPI-Minl ) —> MatchSP(XPovertHead, D)
Van Handel (ms) on ltalian

- MatchSP(XPl+Mad ¢hi+Max)) — > MatchPS(d,XP)
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Specialized vs. Dominance-
preserving

* |s it crucial that subcategory-sensitive constraints
preserve dominance relations?

e E.g., MatchSP(XPl+Max] pl+Max]) vs, MatchSP(XPL+Max] )

e Only MatchSP(XP+Max] ¢pl+Max]) prefers (a) to (b)

Clause a 1 D. i
WP Y|P Pdwp  Pvp P
| | | dwp  Pyp
W Y W Y | |
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Specialized vs. Dominance-
preserving

 Empirical work necessary to know whether both
Specialized and Dominance-preserving are necessary

e Allowing for only Specialized or only Dominance-
preserving reduces the set to 9 constraints
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Two-Word XP Inputs

e Inputs with two-word XPs (rather than unary XPs) ensure we include the
configuration in which a [+Min] ¢ can become [-Min]

e Below, if YP consisted solely of Y, it wouldn't be possible to create a
[-Min] dvp

- Assuming non-vacuous recursion, i.e., *((Y))

e Two-word [+Min] YP can become [-Min] by putting either Y or Z into its
own @
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