
Phonological Phrasing in
Japanese

Nick Kalivoda*
SPOT at LSA 2021

*Based on Bellik, Ito, Kalivoda, & Mester (to appear 2021)

Japanese Mismatch
Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to
mismatching prosody:

(1) [[[Naomi-no] ane-to] yunomi-no] iro]
 Naomi-GEN sister-GEN teacup-GEN color
 'the color of the teacup of Naomi's sister'

→ (φ (φ Naomi-no ane-no) (φ yunomi-no iro))

Japanese Mismatch
Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to
mismatching prosody:

(1) [[[Naomi-no] ane-to] yunomi-no] iro]
 Naomi-GEN sister-GEN teacup-GEN color
 'the color of the teacup of Naomi's sister'

→ (φ (φ Naomi-no ane-no) (φ yunomi-no iro))
 not a syntactic constituent

Japanese Mismatch
Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to
mismatching prosody:

(1) [[[Naomi-no] ane-to] yunomi-no] iro]
 Naomi-GEN sister-GEN teacup-GEN color
 'the color of the teacup of Naomi's sister'

→ (φ (φ Naomi-no ane-no) (φ yunomi-no iro))
 not a syntactic constituent

Evidence: φ-initial rise on ω1, ω3
 Second rise is downstepped due to φMax over (φ ω1 ω2) and (φ ω3 ω4)

Japanese Matches
However, 4-word XPs of all other shapes undergo perfect matching (Kubozono
1989):

Right-branching: Balanced:
[A [B [C D]]] → (A (B (C D))) [[A B] [C D]] → ((A B) (C D))

Mixed (Left/Right): Mixed (Right/Left):
[[A [B C]] D] → ((A (B C)) D) [A [[B C] D]] → (A ((B C) D))

Previous analyses (Selkirk 2011, Ishihara 2014, Kalivoda 2018) have attempted to
analyze the left-branching mismatch in Match Theory (Selkirk 2011), but have not
considered the matching cases.

We show that we need Match and Align to account for all these cases.

Studying OT systems
● An OT system S = (GenS,ConS)
● We define OT systems by using SPOT (Bellik et al. 2015-2020) and

OTWorkplace (Prince et al. 2007-2020).
● The systems discussed in this talk are on the SPOT interface (linked from

http://spot.sites.ucsc.edu):

http://spot.sites.ucsc.edu

Naming schema for our systems
S 'system'

Naming schema for our systems
S 'system'

Msp Match(XP,φ) in CON

Mps Match(φ,XP) in CON

Naming schema for our systems
S 'system'

Msp Match(XP,φ) in CON

Mps Match(φ,XP) in CON

Asp Align(XP,L,φ,L) and Align(XP,R,φ,R) in CON

Aps Align(φ,L,XP,L) and Align(φ,R,XP,R) in CON

Naming schema for our systems
S 'system'

Msp Match(XP,φ) in CON

Mps Match(φ,XP) in CON

Asp Align(XP,L,φ,L) and Align(XP,R,φ,R) in CON

Aps Align(φ,L,XP,L) and Align(φ,R,XP,R) in CON

Only CON varies; GEN constant across systems.

S.Msp.Asp
Matching and Alignment

GEN.Msp.Asp: Inputs
A candidate is an input-output pair.

GEN.Msp.Asp: Inputs
A candidate is an input-output pair.

(1) Inputs
Syntactic trees with 3 or 4 terminal nodes, where:

GEN.Msp.Asp: Inputs
A candidate is an input-output pair.

(1) Inputs
Syntactic trees with 3 or 4 terminal nodes, where:

• every non-terminal node is a binary-branching XP

GEN.Msp.Asp: Inputs
A candidate is an input-output pair.

(1) Inputs
Syntactic trees with 3 or 4 terminal nodes, where:

• every non-terminal node is a binary-branching XP
• every terminal node is an X0

GEN.Msp.Asp: Inputs
A candidate is an input-output pair.

(1) Inputs
Syntactic trees with 3 or 4 terminal nodes, where:

• every non-terminal node is a binary-branching XP
• every terminal node is an X0

I.e.:

 XP XP XP XP XP XP

 XP XP XP XP XP XP XP

A B C A B C XP XP XP XP XP XP

A B C D A B C D A B C D A B C D A B C D

GEN.Msp.Asp: Outputs
(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:

GEN.Msp.Asp: Outputs
(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:
• non-terminal nodes are of category φ

GEN.Msp.Asp: Outputs
(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:
• non-terminal nodes are of category φ
• terminal nodes are of category ω

GEN.Msp.Asp: Outputs
(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:
• non-terminal nodes are of category φ
• terminal nodes are of category ω
• the terminal nodes in sTree stand in a one-to-one correspondence
 relation with the terminal nodes in pTree, with linear order preserved.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
Assign one violation for every node of category XP in the syntactic tree such that there is no
node of category φ in the prosodic tree that dominates all and only the same terminal nodes
as XP.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
Assign one violation for every node of category XP in the syntactic tree such that there is no
node of category φ in the prosodic tree that dominates all and only the same terminal nodes
as XP.

(b) ALIGNL(XP,φ)
Assign one violation for every node of category XP in the syntactic tree whose left edge is not
aligned with the left edge of a node of category φ in the prosodic tree.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
Assign one violation for every node of category XP in the syntactic tree such that there is no
node of category φ in the prosodic tree that dominates all and only the same terminal nodes
as XP.

(b) ALIGNL(XP,φ)
Assign one violation for every node of category XP in the syntactic tree whose left edge is not
aligned with the left edge of a node of category φ in the prosodic tree.

(c) ALIGNR(XP,φ)
Assign one violation for every node of category XP in the syntactic tree whose right edge is
not aligned with the right edge of a node of category φ in the prosodic tree.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
(b) ALIGNL(XP,φ)
(c) ALIGNR(XP,φ)

(2) Markedness constraints
(a) BinMin(φ,ω)

Assign one violation for every node of category φ in the prosodic tree that contains fewer than
two nodes of category ω.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
(b) ALIGNL(XP,φ)
(c) ALIGNR(XP,φ)

(2) Markedness constraints
(a) BinMin(φ,ω)

Assign one violation for every node of category φ in the prosodic tree that contains fewer than
two nodes of category ω.

(b) BinMax(φ,ω)
Assign one violation for every node of category φ in the prosodic tree that dominates more
than two nodes of category ω.

CON.Msp.Asp
(1) Mapping constraints

(a) MATCH(XP,φ)
(b) ALIGNL(XP,φ)
(c) ALIGNR(XP,φ)

(2) Markedness constraints
(a) BinMin(φ,ω)

Assign one violation for every node of category φ in the prosodic tree that contains fewer than
two nodes of category ω.

(b) BinMax(φ,ω)
Assign one violation for every node of category φ in the prosodic tree that dominates more
than two nodes of category ω.

(c) BinMax(φ,branches)
Assign one violation for every node of category φ in the prosodic tree that has more than two
children.

Factorial Typology of S.Msp.Asp

Factorial Typology of S.Msp.Asp

Not shown:
 [[A B] C]
 [A [B C]]
 [[A B] [C D]

These match in
all 14 languages

Japanese pattern in S.Msp.Asp

← Japanese

Japanese pattern in S.Msp.Asp

← Japanese

Isomorphic mappings

Japanese pattern in S.Msp.Asp

← Japanese

Rebracketing

Grammar of L.12 in Sp.Msp.Asp
ALIGNL(XP,φ) BINMIN(φ,ω) BINMAX(φ,branches)

BINMAX(φ,ω)

MATCH(XP,φ) ALIGNR(XP,φ)

Support for L.12

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

BINMAX(φ,ω) prefers winner.

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

BINMAX(φ,ω) prefers winner.

Dominates
4 ωs

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

BINMAX(φ,ω) prefers winner.

Dominates
4 ωs

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

BINMAX(φ,ω) prefers winner.

Dominates
3 ωs

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

MATCH(XP,φ) prefers loser; [XP ABC] unmmatched in winner.

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

MATCH(XP,φ) prefers loser; [XP ABC] unmatched in winner.

Support for L.12: L-branching→rebracketed

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

W L L

ALIGNR(XP,φ) prefers loser; C]↛C) in winner.

Support for L.12: mixed-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

A B C D

W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

BINMAX(φ,branches) prefers winner; loser contains ternary (φ A φ D).

Support for L.12: mixed-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

A B C D

W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

BINMAX(φ,ω) prefers loser.

Support for L.12: mixed-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

A B C D

W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

MATCH(XP,φ) prefers winner, but we already know BINMAX(φ,ω) >> MATCH(XP,φ)

Support for L.12: R-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

 φ φ

A B C D

W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

BINMIN(φ,ω) prefers winner; loser contains unary (φB).

Support for L.12: R-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

[A[B[CD]]] (A(B(CD))) ((AB)(CD)) W L W

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

 φ φ

A B C D

W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

BINMAX(φ,ω) prefers loser.

Support for L.12: R-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ φ

A B C D

W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

ALIGNL(XP,φ) prefers winner; [B↛(B in loser.

Support for L.12: R-branching→isomorphic

Input Winner Loser
ALIGNL
(XP,φ)

BINMIN
(φ,ω)

BINMAX
(φ,br)

BINMAX
(φ,ω)

MATCH
(XP,φ)

ALIGNR
(XP,φ)

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ φ

A B C D

W L W

[A[B[CD]]] (A(B(CD))) ((A(B))(CD)) W L W

[A[[BC]D]] (A((BC)D)) (A(BC)D) W L W

[[[AB]C]D] ((AB)(CD)) (((AB)C)D) W L L

BINMAX(φ,ω) prefers loser.

S.Msp.Mps
Pure MATCH

Can we get the pattern without ALIGN?

Can we get the pattern without ALIGN?
● No!

Can we get the pattern without ALIGN?
● No!
● Consider a Pure MATCH system S.Msp.Mps

Can we get the pattern without ALIGN?
● No!
● Consider a Pure MATCH system S.Msp.Mps

(1) GEN.Msp.Mps
 = GEN.Msp.Asp

Can we get the pattern without ALIGN?
● No!
● Consider a Pure MATCH system S.Msp.Mps

(1) GEN.Msp.Mps
 = GEN.Msp.Asp

(2) CON.Msp.Mps
(a) Mapping constraints:

(i) MATCH(XP,φ)
(ii) MATCH(φ,XP): Assign one violation for every node of category φ in the prosodic tree such that there is no

node of category XP in the syntactic tree that dominates all and only the same terminal nodes as φ.
(b) Markedness constraints:

(i) BINMIN(φ,ω)
(ii) BINMAX(φ,ω)
(iii) BINMAX(φ,branches)

The Asymmetry Problem

Input Winner Loser
MATCH
(XP,φ)

MATCH
(φ,XP)

BINMAX
(φ,ω)

BINMIN
(φ,ω)

BINMAX
(φ,br)

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

L L W e e

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ φ

A B C D

W W L e e

The Asymmetry Problem

Input Winner Loser
MATCH
(XP,φ)

MATCH
(φ,XP)

BINMAX
(φ,ω)

BINMIN
(φ,ω)

BINMAX
(φ,br)

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

L L W e e

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ φ

A B C D

W W L e e

The Asymmetry Problem

Input Winner Loser
MATCH
(XP,φ)

MATCH
(φ,XP)

BINMAX
(φ,ω)

BINMIN
(φ,ω)

BINMAX
(φ,br)

 XP

 XP

 XP

A B C D

 φ

 φ φ

A B C D

 φ

 φ

 φ

A B C D

L L W e e

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ φ

A B C D

W W L e e

Mismatch

Mismatch

Match

Match

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!
● Could we fix the problem with an asymmetric markedness constraint?

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!
● Could we fix the problem with an asymmetric markedness constraint?

○ Perhaps, but not with one we're aware of.

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!
● Could we fix the problem with an asymmetric markedness constraint?

○ Perhaps, but not with one we're aware of.
○ STRONGSTART doesn't work––in fact, it works against us here (see (24) in our paper).

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!
● Could we fix the problem with an asymmetric markedness constraint?

○ Perhaps, but not with one we're aware of.
○ STRONGSTART doesn't work––in fact, it works against us here (see (24) in our paper).
○ Hypothetical STRONGEND doesn't work either (see (26) in our paper).

The Asymmetry Problem
● To get the left/right asymmetry, we need at least one asymmetric constraint in

CON.
● MATCH constraints are symmetric, and can't make the distinction.
● Asymmetries arise in Match Theory due to markedness constraints.
● But all three of our binarity constraints are symmetric!
● Could we fix the problem with an asymmetric markedness constraint?

○ Perhaps, but not with one we're aware of.
○ STRONGSTART doesn't work––in fact, it works against us here (see (24) in our paper).
○ Hypothetical STRONGEND doesn't work either (see (26) in our paper).

● Conclusion: Unless we find a plausible asymmetric markedness constraint,
we need ALIGN constraints.*

*Or some other, as yet undiscovered, asymmetric mapping constraint.

S.Asp.Aps
Pure ALIGN

Can we get the pattern without MATCH?
● No!
● Consider a Pure ALIGN system S.Asp.Aps

(1) GEN.Asp.Aps
 = GEN.Msp.Asp

Can we get the pattern without MATCH?
● No!
● Consider a Pure ALIGN system S.Asp.Aps

(1) GEN.Asp.Aps
 = GEN.Msp.Asp

(2) CON.Asp.Aps
(a) Mapping constraints:

ALIGNL(XP,φ) ALIGNL(φ,XP)
ALIGNR(XP,φ) ALIGNR(φ,XP)

Can we get the pattern without MATCH?
● No!
● Consider a Pure ALIGN system S.Asp.Aps

(1) GEN.Asp.Aps
 = GEN.Msp.Asp

(2) CON.Asp.Aps
(a) Mapping constraints:

ALIGNL(XP,φ) ALIGNL(φ,XP)
ALIGNR(XP,φ) ALIGNR(φ,XP)

(b) Markedness constraints
same binarity constraints as before

The Ambivalence Problem

Input Winner Loser
ALIGNL
(XP,φ)

ALIGNR
(XP,φ)

ALIGNL
(φ,XP)

ALIGNR
(φ,XP)

BINMAX
(φ,ω)

BINMIN
(φ,ω)

BINMAX
(φ,br)

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

 φ

A B C D

e e e e e e e

 XP

 XP

 XP

A B C D

 φ

 φ

 φ

A B C D

 φ

 φ

 φ

A B C D

e e e e e e e

The Ambivalence Problem
● The Ambivalence Problem arises because ALIGN constraints can be satisfied

without matching all XP's/φ's.

The Ambivalence Problem
● The Ambivalence Problem arises because ALIGN constraints can be satisfied

without matching all XP's/φ's.
● For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.

The Ambivalence Problem
● The Ambivalence Problem arises because ALIGN constraints can be satisfied

without matching all XP's/φ's.
● For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
● No markedness constraint, standard or novel, could solve this problem;

difference between [A[[BC]D]]→(A((BC)D)) and [[A[BC]]D]→((A(BC))D)
comes down to mapping (faithfulness).

The Ambivalence Problem
● The Ambivalence Problem arises because ALIGN constraints can be satisfied

without matching all XP's/φ's.
● For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
● No markedness constraint, standard or novel, could solve this problem;

difference between [A[[BC]D]]→(A((BC)D)) and [[A[BC]]D]→((A(BC))D)
comes down to mapping (faithfulness).

● The mapping constraint WRAP(XP) can't solve the problem; all of the
outputs in our systems satisfy it perfectly.

The Ambivalence Problem
● The Ambivalence Problem arises because ALIGN constraints can be satisfied

without matching all XP's/φ's.
● For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
● No markedness constraint, standard or novel, could solve this problem;

difference between [A[[BC]D]]→(A((BC)D)) and [[A[BC]]D]→((A(BC))D)
comes down to mapping (faithfulness).

● The mapping constraint WRAP(XP) can't solve the problem; all of the outputs
in our systems satisfy it perfectly.

● So we need a MATCH constraint.

Conclusion
Using SPOT, we have found that Japanese φ-phrasing involves Match and Align.

Direction for future research:

● Expanding past 4-word phrases, our systems make predictions for
larger prosodic structures. Are these borne out?

● Are the other languages in the factorial typology of S.Msp.Asp empirically
supported? (e.g. mirror-image Japanese?)

