Phonological Phrasing in Japanese

Nick Kalivoda* SPOT at LSA 2021

*Based on Bellik, Ito, Kalivoda, \& Mester (to appear 2021)

Japanese Mismatch

Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to mismatching prosody:
(1) [[[Naomi-no] ane-to] yunomi-no] iro]

Naomi-GEN sister-GEN teacup-GEN color 'the color of the teacup of Naomi's sister'

$$
\rightarrow\left(_{\varphi}(\varphi \text { Naomi-no ane-no) (} \text { yunomi-no iro)) }\right.
$$

Japanese Mismatch

Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to mismatching prosody:
(1) [[[Naomi-no] ane-to] yunomi-no] iro]

Naomi-GEN sister-GEN teacup-GEN color
'the color of the teacup of Naomi's sister'

$$
\rightarrow\left(_{\varphi}(\varphi \text { Naomi-no ane-no }){\underset{\varphi}{\varphi}}^{\text {yunomi-no iro })}\right)
$$

Japanese Mismatch

Kubozono (1989) found that a left-branching 4-word XP in Japanese maps to mismatching prosody:
(1) [[[Naomi-no] ane-to] yunomi-no] iro]

Naomi-GEN sister-GEN teacup-GEN color
'the color of the teacup of Naomi's sister'

$$
\rightarrow\left(_{\varphi}(\varphi \text { Naomi-no ane-no }){\underset{\varphi}{\varphi}}^{\text {yot a syntactic constituent }} \text { nomi-no iro }\right)
$$

Evidence: φ-initial rise on ω_{1}, ω_{3}
Second rise is downstepped due to $\varphi^{\mathrm{Max}} \operatorname{over}\left(\varphi \omega_{1} \omega_{2}\right)$ and $\left(\varphi \omega_{3} \omega_{4}\right)$

Japanese Matches

However, 4-word XPs of all other shapes undergo perfect matching (Kubozono 1989):

$$
\begin{aligned}
& \text { Right-branching: } \\
& \begin{array}{lll}
{[\mathrm{A}[\mathrm{~B}[\mathrm{C} \mathrm{D]]]]}} & \rightarrow & (\mathrm{A}(\mathrm{~B}(\mathrm{C} \mathrm{D}))) \\
\text { Mixed (Left/Right): } & \\
{[[\mathrm{A}[\mathrm{~B} \mathrm{C]]} \mathrm{D]}} & \rightarrow & ((\mathrm{A}(\mathrm{~B} \mathrm{C})) \mathrm{D})
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Balanced: } \\
& \begin{array}{lll}
{[\mathrm{A} \mathrm{~B}][\mathrm{C} \mathrm{D]]}} & \rightarrow & ((\mathrm{A} \mathrm{~B} \mathrm{)} \mathrm{(C} \mathrm{D))} \\
\text { Mixed (Right/Left): } & \\
{[\mathrm{A}[[\mathrm{~B} \mathrm{C]} \mathrm{D]]}} & \rightarrow & (\mathrm{A}((\mathrm{~B} C) \mathrm{D}))
\end{array}
\end{aligned}
$$

Previous analyses (Selkirk 2011, Ishihara 2014, Kalivoda 2018) have attempted to analyze the left-branching mismatch in Match Theory (Selkirk 2011), but have not considered the matching cases.

We show that we need Match and Align to account for all these cases.

Studying OT systems

- An OT system $S=\left(\right.$ Gen $_{s}$, Con $\left._{s}\right)$
- We define OT systems by using SPOT (Bellik et al. 2015-2020) and OTWorkplace (Prince et al. 2007-2020).
- The systems discussed in this talk are on the SPOT interface (linked from http://spot.sites.ucsc.edu):

Naming schema for our systems

S 'system'

Naming schema for our systems

S 'system'

Msp $\quad \operatorname{Match}(X P, \varphi)$ in Con
Mps $\operatorname{Match}(\varphi, X P)$ in Con

Naming schema for our systems

S 'system'
Msp Match (XP, φ) in Con

Mps Match $(\varphi, X P)$ in Con
Asp Align($\mathrm{XP}, \mathrm{L}, \varphi, \mathrm{L}$) and Align $(\mathrm{XP}, \mathrm{R}, \varphi, \mathrm{R})$ in Con
Aps Align $(\varphi, L, X P, L)$ and $\operatorname{Align}(\varphi, R, X P, R)$ in Con

Naming schema for our systems

S	'system'
Msp	Match $(X P, \varphi)$ in Con
Mps	Match $(\varphi, X P)$ in Con
Asp	Align $(X P, L, \varphi, L)$ and Align $(X P, R, \varphi, R)$ in Con
Aps	Align $(\varphi, L, X P, L)$ and $\operatorname{Align}(\varphi, R, X P, R)$ in Con

Only Con varies; Gen constant across systems.

S.Msp.Asp Matching and Alignment

Gen.Msp.Asp: Inputs

A candidate is an input-output pair.

Gen.Msp.Asp: Inputs

A candidate is an input-output pair.

(1) Inputs

Syntactic trees with 3 or 4 terminal nodes, where:

Gen.Msp.Asp: Inputs

A candidate is an input-output pair.
(1) Inputs

Syntactic trees with 3 or 4 terminal nodes, where:

- every non-terminal node is a binary-branching XP

Gen.Msp.Asp: Inputs

A candidate is an input-output pair.
(1) Inputs

Syntactic trees with 3 or 4 terminal nodes, where:

- every non-terminal node is a binary-branching XP
- every terminal node is an X^{0}

Gen.Msp.Asp: Inputs

A candidate is an input-output pair.
(1) Inputs

Syntactic trees with 3 or 4 terminal nodes, where:

- every non-terminal node is a binary-branching XP
- every terminal node is an X^{0}
I.e.:

Gen.Msp.Asp: Outputs

(1) Outputs

For a syntactic input sTree, every prosodic tree p Tree such that:

Gen.Msp.Asp: Outputs

(1) Outputs

For a syntactic input sTree, every prosodic tree p Tree such that:

- non-terminal nodes are of category φ

Gen.Msp.Asp: Outputs

(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:

- non-terminal nodes are of category φ
- terminal nodes are of category ω

Gen.Msp.Asp: Outputs

(1) Outputs

For a syntactic input sTree, every prosodic tree pTree such that:

- non-terminal nodes are of category φ
- terminal nodes are of category ω
- the terminal nodes in sTree stand in a one-to-one correspondence relation with the terminal nodes in pTree, with linear order preserved.

Con.Msp.Asp

(1) Mapping constraints
(a) Матсн (XP, φ)

Assign one violation for every node of category XP in the syntactic tree such that there is no node of category φ in the prosodic tree that dominates all and only the same terminal nodes as XP.

Con.Msp.Asp

(1) Mapping constraints
(a) $\operatorname{Match(XP,\varphi)~}$

Assign one violation for every node of category XP in the syntactic tree such that there is no node of category φ in the prosodic tree that dominates all and only the same terminal nodes as XP.
(b) AlignL(XP, φ)

Assign one violation for every node of category XP in the syntactic tree whose left edge is not aligned with the left edge of a node of category φ in the prosodic tree.

Con.Msp.Asp

(1) Mapping constraints
(a) $\operatorname{Match}(\mathbf{X P}, \varphi)$

Assign one violation for every node of category XP in the syntactic tree such that there is no node of category φ in the prosodic tree that dominates all and only the same terminal nodes as XP.
(b) $\quad \operatorname{AlignL}(X P, \varphi)$

Assign one violation for every node of category XP in the syntactic tree whose left edge is not aligned with the left edge of a node of category φ in the prosodic tree.
(c) AlignR(XP, φ)

Assign one violation for every node of category XP in the syntactic tree whose right edge is not aligned with the right edge of a node of category φ in the prosodic tree.

Con.Msp.Asp

(1) Mapping constraints
(a) $\operatorname{MATCH}(X P, \varphi)$
(b) $\operatorname{AlignL}(X P, \varphi)$
(c) $\operatorname{AlIGNR}(X P, \varphi)$
(2) Markedness constraints
(a) $\operatorname{BinMin}(\varphi, \omega)$

Assign one violation for every node of category φ in the prosodic tree that contains fewer than two nodes of category ω.

Con.Msp.Asp

(1) Mapping constraints
(a) $\operatorname{Match}(X P, \varphi)$
(b) $\operatorname{AlignL}(X P, \varphi)$
(c) $\operatorname{AlIGNR}(X P, \varphi)$
(2) Markedness constraints
(a) $\operatorname{BinMin}(\varphi, \omega)$

Assign one violation for every node of category φ in the prosodic tree that contains fewer than two nodes of category ω.
(b) $\operatorname{BinMax}(\varphi, \omega)$

Assign one violation for every node of category φ in the prosodic tree that dominates more than two nodes of category ω.

Con.Msp.Asp

(1) Mapping constraints
(a) $\operatorname{Match}(\mathrm{XP}, \varphi)$
(b) $\operatorname{AlignL}(X P, \varphi)$
(c) $\mathrm{AlIGNR}(X P, \varphi)$
(2) Markedness constraints
(a) $\operatorname{BinMin}(\varphi, \omega)$

Assign one violation for every node of category φ in the prosodic tree that contains fewer than two nodes of category ω.
(b) $\operatorname{BinMax}(\varphi, \omega)$

Assign one violation for every node of category φ in the prosodic tree that dominates more than two nodes of category ω.
(c) $\operatorname{BinMax}(\varphi$, branches)

Assign one violation for every node of category φ in the prosodic tree that has more than two children.

Factorial Typology of S.Msp.Asp

	$[[[A B] C] D]$	[$[\mathbf{A}[\mathbf{[B C} \mathbf{C}]] \mathrm{D}]$	[A [[B C] D]]	[A [B [C D]]
L. 1	((AB) (CD))	((A B) (CD))	((A B) (CD))	((AB) (CD))
L. 2	((A B) ((C) D))	((A B) ((C) D))	((A B) ((C) D)	((AB) (CD))
L. 3	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	$((\mathrm{A}(\mathrm{B} \mathrm{C})$) D)	$(\mathrm{A}((\mathrm{BC}) \mathrm{D})$)	((AB) (CD))
L. 4	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D})$	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D}$)	((AB) (CD) $)$
L. 5	((AB) (CD) $)$	(A (BC) D)	(A (BC) D)	((AB) (CD))
L. 6	((A B) ((C) D))	($\mathrm{A}(\mathrm{B} \mathrm{C)} \mathrm{D)}$	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D})$	((AB) (CD) $)$
L. 7	((AB) (CD))	((A (B)) (CD))	((A (B)) (C D))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 8	((AB) ((C) D))	((A (B)) ((C) D))	((A (B)) ((C) D))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
. 9	((A B) (CD) $)$	$(\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D})$	(A (B C) D)	((A (B)) (CD))
L. 10	((A B) ((C) D))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D})$	((A (B)) (CD))
L. 11	(((A B) C) D)	((A (B C)) D	($\mathrm{A}((\mathrm{BC}) \mathrm{D})$)	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)
L. 12	((AB) (CD) $)$	((A (B C)) D)	$(\mathbf{A}(\mathbf{(B C) D})$)	(A (B (CD))
L. 13	(((A B) C) D)	(A (B C) D)	(A (B C) D)	($\mathrm{A}(\mathrm{B}(\mathrm{C}$ D)))
L. 14	((A B) (C D)	(A (B C) D)	(A (B C) D)	($\mathrm{A}(\mathrm{B}(\mathrm{C}$ D)))

Factorial Typology of S.Msp.Asp

	$\left[\left[\left[\begin{array}{ll}\text { B }] & C] \\ \text { D }]\end{array}\right.\right.\right.$	$\left[\left[\begin{array}{ll}\text { [} \\ \text { B C C }\end{array}\right]\right.$ D]	$[\mathbf{A}[\mathbf{B C} \mathbf{C}] \mathbf{D}]$	[A [B [C D D]l]	Not shown: [A B] C] [A [B C]] [$\mathrm{A} A \mathrm{~B}][\mathrm{C} D]$
L. 1	((AB) (CD))	((AB) (CD))	((AB) (CD))	((AB) (CD))	
L. 2	((AB) ((C) D))	$((A B)((C) D))$	((AB) ((C) D))	((AB) (CD))	
L. 3	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	$((A(B C)) D$)	(A ((BC)D))	((AB) (CD))	
L. 4	(((AB) C) D)	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	((AB) (CD))	
L. 5	((AB) (CD))	($\mathrm{A}(\mathrm{BC}) \mathrm{D}$)	(A (BC) D)	((AB) (CD))	
L. 6	((AB) ((C) D))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	((AB) (CD))	These match in all 14 languages
L. 7	((AB) (CD))	$((A(B))(C D))$	((A (B)) (CD))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	
L. 8	((AB) ((C) D))	$((A(B))((C) D))$	$((A(B))((C) D))$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	
L. 9	((AB) (CD))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC) D)	((A (B)) (CD))	
L. 10	((AB) ((C) D))	$(A(B C) D)$	(A(BC)D)	((A (B)) (CD))	
L. 11	(((AB) C) D)	$((A(B C)) ~ D) ~$	(A ($(\mathrm{BC}) \mathrm{D})$)	(A (B (CD))	
L. 12	((AB) (CD) $)$	($\left.(\mathbf{A}(\mathbf{B C}))^{\mathbf{D}}\right)$	(A ($(\mathbf{B C}) \mathbf{D})$)	(A(B) $(\mathbf{C D}))$)	
L. 13	(((AB) C) D)	(A (BC) D)	(A(BC) D)	(A(B (CD))	
L. 14	((A B) (CD))	(A(BC) D)	(A(B C) D)	(A(B (C D))	

Japanese pattern in S.Msp.Asp

	$[[[\mathbf{A B}] \mathbf{C}] \mathbf{D}]$		$[\mathbf{A}[\mid \mathbf{B C} \mathbf{C}] \mathbf{D}]$	[${ }^{\text {[}}$ [[[C D]I]	
L. 1	((AB) (CD))	((AB) (CD))	((AB) (CD))	((AB) (CD))	
L. 2	((AB) ((C) D))	$((A B)((C) D))$	((AB) ((C) D))	((AB) (CD))	
L. 3	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	((A (BC)) D)	(A ((BC) D))	((AB) (CD))	
L. 4	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	(A (BC) D)	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	((AB) (CD))	
L. 5	((AB) (CD))	(A(BC) D)	(A (BC) D)	((AB) (CD))	
L. 6	((AB) ((C) D))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC) D)	((AB) (CD))	
L. 7	((AB) (CD))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	((A (B)) (CD))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	
L. 8	((AB) ((C) D))	$((A(B))($ (C) D) $)$	$((A(B))((C) D))$	$((A(B))(C D))$	
L. 9	((AB) (CD))	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC) D)	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	
L. 10	((AB) ((C) D)	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC)D)	((A (B)) (CD))	
L. 11	(((AB) C) D)	$((A(B C)) D)$	(A((BC)D))	(A(B (CD))	
L. 12	((AB) (CD))	($\mathbf{A}(\mathbf{B C} \mathbf{C})$ D)	(A ($\mathbf{B C} \mathbf{C}$) $\mathbf{D})$)	(A(B) (CD))	\leftarrow Japanese
L. 13	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC)D)	$(\mathrm{A}(\mathrm{B}(\mathrm{CD})))^{\text {d }}$	
L. 14	((AB) (CD))	(A (BC) D)	(A(BC) D)	(A (B (C D))	

Japanese pattern in S.Msp.Asp

			[${ }^{\text {[}}$ [$\left.\mathbf{B C} \mathbf{C}\right]$ D] $]$	
L. 1	((AB) (CD))	((AB) (CD))	((AB) (CD))	((AB) (CD))
L. 2	((AB) ((C) D))	$((A B)((C) D))$	((AB) ((C) D))	((AB) (CD))
L. 3	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	($\left.\mathrm{A}(\mathrm{BC}))^{\mathrm{D}}\right)$	(A (B C$) \mathrm{D})$)	((AB) (CD))
L. 4	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC) D)	((AB) (CD))
L. 5	((AB) (CD))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A (BC) D)	((AB) (CD))
L. 6	((AB) ((C) D))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A (BC) D)	((AB) (CD)
L. 7	((AB) (CD))	$((A(B))(C D))$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	$((A(B))(C D))$
L. 8	((AB) ((C)D))	$((A(B))((C) D))$	((A (B)) ((C) D))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 9	((AB) (CD))	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 10	((AB) ((C) D))	((A B (B Isomorphic mappings		((A $(\mathrm{B})(\mathrm{CD})$)
L. 11	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$			(A(B (CD))
L. 12	((AB) (CD) $)$	($\mathbf{A}(\mathbf{B C} \mathbf{C})$ D)	(A ($\mathbf{B C} \mathbf{C}$) ${ }^{\text {d }}$)	(A(B) (CD))
L. 13	(((AB) C) D)	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC)D)	(A(B (CD))
L. 14	((A B) (CD))	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	(A(BC) D)	(A (B (C D))

Japanese pattern in S.Msp.Asp

	$[[[\mathrm{AB}] \mathbf{C}] \mathbf{D}]$	[[A [B C] D]	[A [[B C] D]	[A [B [C D]]]
L. 1	((AB) (CD))	$((\mathrm{AB})(\mathrm{CD})$)	((AB) (CD))	((AB) (CD))
L. 2	((AB) ((C) D))	((A B) ($(C) \mathrm{D})$)	((A B) ($(\mathrm{C}) \mathrm{D})$)	((AB) (CD))
L. 3	(((AB) C) D)	$((\mathrm{A}(\mathrm{B} \mathrm{C})) \mathrm{D})$	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D})$)	((AB) (CD))
L. 4	(($(\mathrm{AB}) \mathrm{C}) \mathrm{D})$	($\mathrm{A}(\mathrm{B} \mathrm{C)} \mathrm{D})$	(A (B C) D)	((AB) (CD))
L. 5	((AB) (CD))	(A (BC) D)	(A (BC) D)	((AB) (CD))
L. 6	((AB) ((C) D))	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$	($\mathrm{A}(\mathrm{BC}) \mathrm{D}$)	((AB) (CD))
L. 7	((AB) (CD) $)$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 8	((AB) ((C) D))	((A (B)) ((C) D))	((A (B)) ((C) D))	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 9	((A B) (C D))	(A (B C) D)	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D}$)	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$
L. 10	ng	(A (B C) D)	($\mathrm{A}(\mathrm{B} \mathrm{C}) \mathrm{D}$)	((A (B)) (CD))
L. 11	(1)	((A (B C)) D)	($\mathrm{A}($ (BC$) \mathrm{D})$)	(A (B (CD))
L. 12	((A B) (C D))	((A (B C)) D)	($\mathrm{A}($ (BC) D) $)$	(A (B (CD))
L. 13	(((AB) C) D)	(A (B C) D)	(A (B C) D)	($\mathrm{A}(\mathrm{B}(\mathrm{C}$ D)))
L. 14	((A B) (C D))	($\mathrm{A}(\mathrm{B} \mathrm{C)} \mathrm{D)}$	($\mathrm{A}(\mathrm{B} \mathrm{C)} \mathrm{D)}$	(A (B (C D)))

Grammar of L. 12 in Sp.Msp.Asp

Support for L. 12

Input	Winner	Loser	ALIGNL $(\mathbf{X P}, \boldsymbol{\varphi})$	BinMin $(\boldsymbol{\varphi}, \boldsymbol{\omega})$	BinMAX $(\boldsymbol{\varphi}$, br $)$	BinMAx $(\boldsymbol{\varphi}, \boldsymbol{\omega})$	MATCH $(\mathbf{X P}, \boldsymbol{\varphi})$	ALIGNR $(\mathbf{X P}, \boldsymbol{\varphi})$
$[\mathrm{A}[\mathrm{B}[\mathrm{CD}]]]$	$(\mathrm{A}(\mathrm{B}(\mathrm{CD})))$	$((\mathrm{AB})(\mathrm{CD}))$	\mathbf{W}			\mathbf{L}	W	
$[\mathrm{A}[\mathrm{B}[\mathrm{CD}]]]]$	$(\mathrm{A}(\mathrm{B}(\mathrm{CD})))$	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$		\mathbf{W}		\mathbf{L}	W	
$[\mathrm{A}[[\mathrm{BC}] \mathrm{D}]]]$	$(\mathrm{A}((\mathrm{BC}) \mathrm{D}))$	$(\mathrm{A}(\mathrm{BC}) \mathrm{D})$			\mathbf{w}	\mathbf{L}	W	
$[[[\mathrm{AB}] \mathrm{C}] \mathrm{D}]$	$((\mathrm{AB})(\mathrm{CD}))$	$(((\mathrm{AB}) \mathrm{C}) \mathrm{D})$				\mathbf{w}	\mathbf{L}	\mathbf{L}

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL (XP, φ)	BinMin (φ, ω)	BinMax (φ, br)	$\underset{(\varphi, \omega)}{\operatorname{BinMAX}}$	Матсн (XP, φ)	AlignR (XP, φ)
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}(\mathrm{(BC)} \mathrm{D})$)	($\mathrm{A}(\mathrm{BC}) \mathrm{D}$)			W	L	W	
						W	L	L

$\operatorname{Bin} \operatorname{Max}(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL (XP, φ)	BinMin (φ, ω)	BinMax (φ, br)	BinMax (φ, ω)	Матсн (XP, φ)	AlignR (XP, φ)
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD})$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$)	($\mathrm{A}(\mathrm{BC}) \mathrm{D}$)			W	L	W	
						W	L	L

$\operatorname{Bin} \operatorname{Max}(\varphi, \omega)$ prefers winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL (XP, φ)	BinMIIn (φ, ω)	BinMAX (φ, br)	BinMAX (φ, ω)	Матсн (XP, φ)	AlignR (XP, φ)
[A[B[CD]]]	(A(B(CD))	((AB)(CD))	W			L	w	
[A[B[CD]]]	(A(B(CD)))	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}(\mathrm{(BC)D})$)	(A(BC)D)			W	L	W	
			inates			W	L	L

$\operatorname{Bin} \operatorname{Max}(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL (XP, φ)	BinMIIn (φ, ω)	BinMAX (φ, br)	BinMAX (φ, ω)	Матсн (XP, φ)	AlignR (XP, φ)
[A[B[CD]]]	(A(B(CD))	((AB)(CD))	W			L	w	
[A[B[CD]]]	(A(B(CD)))	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}(\mathrm{(BC)D})$)	(A(BC)D)			W	L	W	
						W	L	L

$\operatorname{Bin} \operatorname{Max}(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL $(X P, \varphi)$	BinMin (φ, ω)	BinMax (φ, br)	BinMAX (φ, ω)	Match $(X P, \varphi)$	AlignR $(X P, \varphi)$
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))^{\text {) }}$	((AB)(CD))	W			L	W	
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}((\mathrm{BC}) \mathrm{D})$)	(A(BC)D)			W	L	W	
						W	L	L

МАТСн $(X P, \varphi)$ prefers loser; $\quad\left[\begin{array}{l}\text { XP }\end{array}\right.$ ABC] unmmatched in winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	AlignL $(X P, \varphi)$	BinMin (φ, ω)	BinMax (φ, br)	BinMax (φ, ω)	Match $(X P, \varphi)$	AlignR $(X P, \varphi)$
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]] $]$	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	(A((BC)D))	(A(BC)D)			W	L	W	
						W	L	L

МАтсн $(X P, \varphi)$ prefers loser; $\quad\left[{ }_{X P} A B C\right]$ unmatched in winner.

Support for L.12: L-branching \rightarrow rebracketed

Input	Winner	Loser	$\begin{aligned} & \text { ALIGNL } \\ & (X P, \varphi) \end{aligned}$	$\begin{gathered} \text { BINMIN } \\ (\varphi, \omega) \end{gathered}$	$\begin{gathered} \text { BINMAX } \\ (\varphi, \mathrm{br}) \end{gathered}$	$\begin{gathered} \text { BINMAX } \\ (\varphi, \omega) \end{gathered}$	$\begin{aligned} & \text { MATCH } \\ & (\mathrm{XP}, \varphi) \end{aligned}$	$\begin{gathered} \text { ALIGNR } \\ (X P, \varphi) \end{gathered}$
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	w	
[A[[BC]D]]	($\mathrm{A}(\mathrm{BC}) \mathrm{D})$)	(A(BC)D)			W	L	W	
						W	L	L

AlignR(XP, φ) prefers loser; C] $\nrightarrow C$) in winner.

Support for L.12: mixed-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BinMIN (φ, ω)	BinMAx (φ, br)	BinMax (φ, ω)	$\begin{aligned} & \text { MATCH } \\ & (\mathrm{XP}, \varphi) \end{aligned}$	AlignR $(X P, \varphi)$
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
					W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

BinMAX(φ,branches) prefers winner; loser contains ternary $\left({ }_{\varphi} A \varphi D\right)$.

Support for L.12: mixed-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BINMIN (φ, ω)	$\begin{gathered} \text { BINMAX } \\ (\varphi, b r) \end{gathered}$	$\begin{aligned} & \text { BinMAX } \\ & (\varphi, \omega) \end{aligned}$	$\begin{aligned} & \text { MATCH } \\ & (X P, \varphi) \end{aligned}$	AlignR $(X P, \varphi)$
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	$((\mathrm{A}(\mathrm{B}))(\mathrm{CD}))$		W		L	W	
					W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

BinMax $(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers loser.

Support for L.12: mixed-branching \rightarrow isomorphic

Input	Winner	Loser	$\begin{aligned} & \text { ALIGNL } \\ & (X P, \varphi) \end{aligned}$	$\begin{gathered} \text { BINMIN } \\ (\varphi, \omega) \end{gathered}$	$\underset{(\varphi, \mathrm{br})}{\mathrm{BI} \mathrm{I} M \mathrm{AX}}$	$\underset{(\varphi, \omega)}{\operatorname{BinMAX}}$	$\begin{aligned} & \text { MATCH } \\ & (\mathbf{X P}, \varphi) \end{aligned}$	AlignR (XP, φ)
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD})$))	((AB)(CD))	W			L	W	
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
					W	L	(W)	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

МАтсн $(\mathbf{X P}, \varphi)$ prefers winner, but we already know $\operatorname{BinMax}(\varphi, \omega) \gg \operatorname{Match}(\mathbf{X P}, \varphi)$

Support for L.12: R-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BinMin (φ, ω)	BinMAX (φ, br)	BinMax (φ, ω)	МАТСН $(X P, \varphi)$	AlignR $(X P, \varphi)$
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
				W		L	W	
[A[[BC]D]]	(A((BC)D))	(A(BC)D)			W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

$\operatorname{BinMin}(\varphi, \omega)$ prefers winner; loser contains unary $\left({ }_{\varphi} B\right)$.

Support for L.12: R-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BINMIN (φ, ω)	BinMax (φ, br)	BinMax (φ, ω)	$\begin{aligned} & \text { МАТСН } \\ & (X P, \varphi) \end{aligned}$	AlignR $(X P, \varphi)$
[A[B[CD]]]	($\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((AB)(CD))	W			L	W	
				W		L	W	
[A[[BC]D]]	($\mathrm{A}((\mathrm{BC}) \mathrm{D})$)	(A(BC)D)			W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

BinMax $(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers loser.

Support for L.12: R-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BINMIN (φ, ω)	BinMAX (φ, br)	BinMax (φ, ω)	$\begin{aligned} & \text { МАТСН } \\ & (X P, \varphi) \end{aligned}$	AlignR $(X P, \varphi)$
			W			L	W	
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($\mathrm{A}((\mathrm{BC}) \mathrm{D})$)	(A(BC)D)			W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

AlignL(XP, φ) prefers winner; [$B \rightarrow(B$ in loser.

Support for L.12: R-branching \rightarrow isomorphic

Input	Winner	Loser	AlignL $(X P, \varphi)$	BINMIN (φ, ω)	BinMax (φ, br)	$\begin{aligned} & \text { BinMAX } \\ & (\varphi, \omega) \end{aligned}$	$\begin{aligned} & \text { MATCH } \\ & (X P, \varphi) \end{aligned}$	AlignR $(X P, \varphi)$
			W			L	W	
[A[B[CD]]]	$(\mathrm{A}(\mathrm{B}(\mathrm{CD}))$)	((A(B))(CD))		W		L	W	
[A[[BC]D]]	($($ (BC$) \mathrm{D})$)	(A(BC)D)			W	L	W	
[[[AB]C]D]	((AB)(CD))	(((AB)C)D)				W	L	L

BinMax $(\boldsymbol{\varphi}, \boldsymbol{\omega})$ prefers loser.

S.Msp.Mps
 Pure Match

Can we get the pattern without ALIGN?

Can we get the pattern without ALIGN?

- No!

Can we get the pattern without ALIGN?

- No!
- Consider a Pure Match system S.Msp.Mps

Can we get the pattern without ALIGN?

- No!
- Consider a Pure Match system S.Msp.Mps
(1) Gen.Msp.Mps
= Gen.Msp.Asp

Can we get the pattern without ALIGN?

- No!
- Consider a Pure Match system S.Msp.Mps
(1) Gen.Msp.Mps
= Gen.Msp.Asp
(2) Con.Msp.Mps
(a) Mapping constraints:
(i) $\mathrm{Match}(\mathrm{XP}, \varphi)$
(ii) $\operatorname{MATCH}(\varphi, \mathrm{XP})$: Assign one violation for every node of category φ in the prosodic tree such that there is no node of category XP in the syntactic tree that dominates all and only the same terminal nodes as φ.
(b) Markedness constraints:
(i) $\operatorname{Bin} \operatorname{Min}(\varphi, \omega)$
(ii) $\operatorname{BinMAX}(\varphi, \omega)$
(iii) $\operatorname{BinMAX}(\varphi$, branches $)$

The Asymmetry Problem

Input	Winner	Loser	Match $(X P, \varphi)$	$\begin{aligned} & \text { MATCH } \\ & (\varphi, X P) \end{aligned}$	BinMax (φ, ω)	BinMin (φ, ω)	BinMax (φ, br)
			L	L	W	e	e
			W	W	L	e	e

The Asymmetry Problem

Input	Winner	Loser	Match $(X P, \varphi)$	Match $(\varphi, X P)$	BinMax (φ, ω)	BinMIN (φ, ω)	BinMax (φ, br)
			L	L	W	e	e
			W	W	L	e	e

The Asymmetry Problem

Input	Winner	Loser	MATCH $(X P, \varphi)$	$\begin{aligned} & \text { MATCH } \\ & (\varphi, X P) \end{aligned}$	BinMax (φ, ω)	BinMin (φ, ω)	BinMax (φ, br)
			L	L	W	e	e
			W	W	L	e	e

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- МАтсн constraints are symmetric, and can't make the distinction.

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!
- Could we fix the problem with an asymmetric markedness constraint?

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!
- Could we fix the problem with an asymmetric markedness constraint?
- Perhaps, but not with one we're aware of.

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!
- Could we fix the problem with an asymmetric markedness constraint?
- Perhaps, but not with one we're aware of.
- StrongStart doesn't work—in fact, it works against us here (see (24) in our paper).

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!
- Could we fix the problem with an asymmetric markedness constraint?
- Perhaps, but not with one we're aware of.
- StrongStart doesn't work—in fact, it works against us here (see (24) in our paper).
- Hypothetical StRongEnd doesn't work either (see (26) in our paper).

The Asymmetry Problem

- To get the left/right asymmetry, we need at least one asymmetric constraint in Con.
- Match constraints are symmetric, and can't make the distinction.
- Asymmetries arise in Match Theory due to markedness constraints.
- But all three of our binarity constraints are symmetric!
- Could we fix the problem with an asymmetric markedness constraint?
- Perhaps, but not with one we're aware of.
- StrongStart doesn't work—in fact, it works against us here (see (24) in our paper).
- Hypothetical StrongEnd doesn't work either (see (26) in our paper).
- Conclusion: Unless we find a plausible asymmetric markedness constraint, we need Align constraints.*
*Or some other, as yet undiscovered, asymmetric mapping constraint.

S.Asp.Aps Pure Align

Can we get the pattern without MATCH?

- No!
- Consider a Pure Align system S.Asp.Aps
(1) Gen.Asp.Aps
= Gen.Msp.Asp

Can we get the pattern without MATCH?

- No!
- Consider a Pure Align system S.Asp.Aps
(1) Gen.Asp.Aps
= Gen.Msp.Asp
(2) Con.Asp.Aps
(a) Mapping constraints:
AlıIGNL(XP, φ)
AlignR(XP, φ)

```
AlIGNL(\varphi,XP)
AlIGNR(\varphi,XP)
```


Can we get the pattern without MATCH?

- No!
- Consider a Pure Alıgn system S.Asp.Aps
(1) Gen.Asp.Aps
= Gen.Msp.Asp
(2) Con.Asp.Aps
(a) Mapping constraints:

AlignL(XP, φ) AlignL($\varphi, X P)$
AlignR(XP, φ) AlignR($\varphi, X P)$
(b) Markedness constraints
same binarity constraints as before

The Ambivalence Problem

Input	Winner	Loser	AlignL (XP, φ)	AlignR (XP, φ)	AlignL $(\varphi, X P)$	AlignR $(\varphi, X P)$	BinMax (φ, ω)	BinMin (φ, ω)	BinMax (φ, br)
			e	e	e	e	e	e	e
			e	e	e	e	e	e	e

The Ambivalence Problem

- The Ambivalence Problem arises because AlıIgn constraints can be satisfied without matching all XP's/ φ 's.

The Ambivalence Problem

- The Ambivalence Problem arises because Align constraints can be satisfied without matching all XP's/ φ 's.
- For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.

The Ambivalence Problem

- The Ambivalence Problem arises because Align constraints can be satisfied without matching all XP's/ φ 's.
- For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
- No markedness constraint, standard or novel, could solve this problem; difference between $[A[[B C] D]] \rightarrow(A((B C) D))$ and $[[A[B C]] D] \rightarrow((A(B C)) D)$ comes down to mapping (faithfulness).

The Ambivalence Problem

- The Ambivalence Problem arises because Align constraints can be satisfied without matching all XP's/ φ 's.
- For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
- No markedness constraint, standard or novel, could solve this problem; difference between $[A[[B C] D]] \rightarrow(A((B C) D))$ and $[[A[B C]] D] \rightarrow((A(B C)) D)$ comes down to mapping (faithfulness).
- The mapping constraint WRAP(XP) can't solve the problem; all of the outputs in our systems satisfy it perfectly.

The Ambivalence Problem

- The Ambivalence Problem arises because Align constraints can be satisfied without matching all XP's/ φ 's.
- For [A[[BC]D]], no need to match [BCD] to get perfect SP and PS alignment.
- No markedness constraint, standard or novel, could solve this problem; difference between $[A[[B C] D]] \rightarrow(A((B C) D))$ and $[[A[B C]] D] \rightarrow((A(B C)) D)$ comes down to mapping (faithfulness).
- The mapping constraint $\operatorname{WRAP}(X P)$ can't solve the problem; all of the outputs in our systems satisfy it perfectly.
- So we need a MATCH constraint.

Conclusion

Using SPOT, we have found that Japanese φ-phrasing involves Match and Align.
Direction for future research:

- Expanding past 4-word phrases, our systems make predictions for larger prosodic structures. Are these borne out?
- Are the other languages in the factorial typology of S.Msp.Asp empirically supported? (e.g. mirror-image Japanese?)

