
SPOT Tutorial
Jenny Bellik (​jbellik@ucsc.edu​) & Nick Kalivoda

95th Annual (Virtual) Meeting of the Linguistic Society of America, 2021

SPOT stands for Syntax-Prosody in Optimality Theory. It is a JavaScript application (Bellik,
Bellik, & Kalivoda 2015–2021) that automates candidate generation (GEN) and constraint
evaluation (CON) for work on the syntax-prosody interface.

● Website: ​http://spot.sites.ucsc.edu
● App: ​https://people.ucsc.edu/~jbellik/spot/interface1.html
● Codebase: ​https://github.com/syntax-prosody-ot

Currently supported by NSF Grant #1749368, awarded to Junko Ito and Armin Mester.

Why automate?
● In order to create a valid analysis in Optimality Theory (OT), we must formally define

the ​OT system S​ that we are studying.
○ S.GEN: the set of input and output candidates (algorithmically defined) in ​S
○ S.CON: the set of constraints in ​S
○ For information on systems, consult Alan Prince’s ​OT Check List​. For a more

verbose introduction, see Prince's ​What is OT?

● In the view of syntax-prosody mapping assumed by SPOT, inputs are syntactic trees
consisting of heads (X​0​), phrases (XP), and clauses (CP). Outputs are prosodic trees
consisting of prosodic words (ω), phonological phrases (φ), and intonational phrases (ι).

● Because candidates are pairs of trees, even the strictest GEN function yields an
exponential increase in the number of output structures as the number of words in the
sentence grows (Figure 1).

○ Most of these will ultimately be harmonically bounded, yet all must be considered
lest an omitted candidate invalidate the final analysis (Bane & Riggle 2012,
Karttunen 2006).

1

mailto:jbellik@ucsc.edu
http://spot.sites.ucsc.edu/
https://people.ucsc.edu/~jbellik/spot/interface1.html
https://github.com/syntax-prosody-ot
http://roa.rutgers.edu/content/article/files/1615_prince_2.pdf
http://roa.rutgers.edu/content/article/files/1513_prince_4.pdf

● These huge numbers of candidates are the primary motivation for automation via SPOT.
○ Obviously it is impractical to build and evaluate thousands of prosodic trees by

hand.
○ It is also impossible to do this automatically using OTWorkplace (Prince et al.

2020) or other existing OT software, because their GEN capacity is limited to
regular expressions, which cannot handle recursion.

○ This is where SPOT comes in. SPOT was designed specifically to handle tree
structures. It produces violation tableaux which can be viewed in the browser, or
imported into the OT tool of your choice for further analysis.

Today, we will build a simplified version of a system that analyzes syntax-prosody matches and
mismatches, inspired by data from Japanese. We will call this system ​Match(Syntax →
Prosody), Align(Syntax → Prosody) = Msp.Asp​, and it will feature in Nick Kalivoda’s talk
immediately after this tutorial.

Step 0: Getting to the SPOT interface
1. Navigate to the SPOT web interface.

a. Open the SPOT website in Chrome or Firefox: ​spot.sites.ucsc.edu
b. At the top (or bottom) of the page, click "SPOT webapp". This will take you to

the SPOT interface.
c. Alternatively​: For local access, click “SPOT codebase” to download the codebase

from Github, and follow the instructions in the README.md.

2

Figure 2: Parses of x, y with
weak layering

https://spot.sites.ucsc.edu/

Step 1: Defining inputs
The inputs to Msp.Asp are inspired by data on Japanese phrasing in Kubozono 1989 (Table 1).

Table 1: Inspirational data on Japanese phrasing (abstracted from Kubozono 1989)

We define the set of inputs for our system Msp.Asp (1) to include two three-word syntactic trees
in addition to the four-word trees in Table 1. We must build, at minimum, the three trees in (2),
which form a universal support for Msp.Asp.

3

Right-branching
syntax

→

Matching prosody

Left-branching
syntax

→

Mismatching
prosody

Mixed-branching
syntax (Left + Right)

→

Matching prosody

Mixed-branching
syntax (Right +
Left)

→

Matching prosody

Symmetrically
branching syntax

→

Matching prosody

(1) Msp.Asp.GEN Inputs = Binary-branching syntactic trees
(a) on terminal strings of 3-4 nodes,
(b) where terminal nodes are syntactic words X​0​, non-terminal nodes are syntactic

phrases XP.
(c) The orthographic representation of the bracketing structure imposes a linear order

on the leaves.
For the full set of inputs, see the appendix.

(2) A universal support for the system Msp.Asp:
(a) [a [b [c d]]] Four words, right-branching = 4wR
(b) [a [[b c] d]] Four words, mixed-branching = 4wM
(c) [[[a b] c] d] Four words, left-branching = 4wL

The labels of the words are arbitrary, but must be distinct. In SPOT, we will give arbitrary labels
to the XPs as well, simply so SPOT can tell them apart.

Table 2: Tree diagrams of the universal support for Msp.Asp

4

 4wR 4wM 4wL

Building syntactic trees manually in SPOT

2. In the ​Manual ​tab under ​GEN: Input parameters​, type "a b c d" into "String of
terminals" and hit "Build syntax". This will open the tree builder, which will include the
seed of your syntactic tree:

In this tree representation, every node has two attributes, a category and an id (identifier).

a. The category, shown with a grey background, must be cp (complementizer
phrase), xp (syntactic phrase) or x0 (syntactic head), if the node is to be visible to
the syntax-prosody mapping constraint.

b. The id (identifier) can be any alphanumeric string (no spaces or hyphens, please),
and must be unique.

c. In this handout we’ll use the notational convention cat–id to refer to nodes.
3. The root node of this tree currently has the id "CP1" and the category "cp". We need to

change these to "XP_7" (or some other id of your choosing) and "xp", respectively.
4. To create the XP containing "b c d":

a. Hover over the space immediately surrounding node x0–b, and click on the grey
area. This area will then turn light blue, indicating that you have selected that
node.

b. Now do the same to select x0–c and x0–d.
c. Click "Add Mother". This will create the node xp–XP_5. The tree should now be:

5. Now create an XP above x0–c and x0–d. This will be labelled XP_6, and will complete

the tree.

5

6. Now click "Done! Add trees to analysis." A message will appear saying "The trees in the
analysis are up-to-date".

a. You can see the JavaScript code for the trees by clicking "Show code".
7. To create another tree, put the terminal string for your tree in the “String of terminals”

box, and click on “Build syntax” again. The seed of a second tree will appear below the
one you already built. Add additional structure using the same procedures as in (3-7), to
create the other two trees (4wM and 4wL).

Building syntactic trees automatically in SPOT
Input syntactic trees can also be created algorithmically, instead of manually. This is much
quicker!

8. Under ​GEN: Input parameters​, click on the ​Automatic​ tab.
9. Leave everything under ​Syntax Parameters​ on its default settings.
10. Click on ​Visibility to phonology​ to expand it, and check “Treat non-branching XPs as

X​0​s.”
a. This excludes non-branching XPs from the syntactic representation as an

analytical simplification; cf. the subset of a system without this assumption in
which BinMin-phi >> MatchXP.

11. Under ​Specify terminals​, type “a b c” in the box labeled “String of terminals 1”. Then
click ​Add terminal string​ and type “a b c d” in the box labeled “String of terminals 2.”

12. Click the orange button marked ​Generate trees. ​You should see the following in the text
area below:

6

 1. [a [b c]]

2. [[a b] c]

1. [a [b [c d]]] = 4wR

2. [a [[b c] d]] = 4wM

3. [[a b] [c d]]

4. [[a [b c]] d]

5. [[[a b] c] d] = 4wL

Step 2: Defining outputs

Outputs in Msp.Asp
We formally define the output structures of the system Msp.Asp in (3):

(3) Msp.Asp.GEN Outputs​ = All possible phonological phrases φ for which
(a) Every syntactic word X​0​ in the input is mapped to an output phonological word ω.

Linear order is preserved.
(b) All non-terminal nodes are of category φ (represented by parentheses).
(c) Output representations are trees with ordered leaves.
(d) The child of a unary-branching φ must be a ω.

Generating prosodic trees in SPOT
13. Scroll down to ​GEN: Output parameters​. Leave the first checkbox for “No prosodic

recursion” unchecked, to allow recursive prosodic structures. You can check “Enforce
headedness” and/or “No level-skipping (enforce exhaustivity)” if you like, but these will
be rendered redundant by the next step.

14. Click ​Prosodic categories​ to show additional GEN options.
a. For "Root prosodic tree in", select φ. This will ensure that all output prosodic

trees are rooted in φs (phonological phrases), rather than the default ι (intonational
phrase).

b. Leave "Intermediate nodes are" and "Prosodic terminals are" at their default
values. These should be φ and ω, respectively.

Step 3: Constraints
For reasons that will be discussed in the next talk, we’ll define CON in Msp.Asp as in (4):

(4) Msp.Asp.CON
(a) Mapping constraints

(i) Match(XP,φ)
Assign one violation for every node of category XP in the syntactic tree
such that there is no node of category φ in the prosodic tree that dominates
all and only the same terminal nodes.

7

(ii) Align(XP,L,φ,L)
Assign a violation for every syntactic node of category XP whose left edge
is not aligned with the left edge of a prosodic node of category φ.

(iii) Align(XP,R,φ,R)
Assign a violation for every syntactic node of category XP whose right
edge is not aligned with the right edge of a prosodic node of category φ.

(b) Markedness constraints:
(i) BinMin(φ,branches)

Assign one violation for every node of category φ in the prosodic tree that
has less than two children.

(ii) BinMax(φ,branches)
Assign one violation for every node of category φ in the prosodic tree that
has more than two children.

(iii) BinMax(φ,ω)
Assign one violation for every node of category φ in the prosodic tree that
dominates more than two nodes of category ω.

Step 3.1 Selecting mapping constraints
15. Under ​Mapping constraints​, click ​Match​ to view the Match Theory constraints. All

constraint definitions can be seen on the interface by clicking on the info buttons next to
each constraint name.

a. Select Match(Syntax→Prosody). We will keep the default category, "XP".

16. Click ​Align/Wrap​ to view alignment constraints. Select two constraints:
a. Align-Left(Syntax→Prosody)
b. Align-Right(Syntax→Prosody).
c. Keep the default category "XP" for these too.

Step 3.2 Selecting markedness constraints

17. Under ​Markedness constraints​, click ​Binarity​ to view the binarity constraints.
a. Under ...​counting branches, ​select BinMin(branches) and BinMax(branches).
b. Under ...​counting leaves, ​select BinMax(leaves).
c. Leave the default category settings at "φ".

8

Step 4+: Violation tableaux and typology
18. Click the ​Get results​ button to download and view the violation tableaux. A dialog box

will appear asking if you want to save the VT as a .csv file; save it for importing into
OTWorkplace.

19. You can also click on the ​Save​ button to download these settings as a .spot file, in case
you want to load them again later.

20. Open OTWorkplace (which can be downloaded and installed on Windows from
https://sites.google.com/site/otworkplace/​) and import the .csv into Excel. (Or open the
csv in Excel and then open OTWorkplace, or open the .csv in another editor, select all,
and copy-paste to add it to OTWorkplace.)

a. Click “Add ins” to display the ​OTWorkplace​ menu.
b. Under ​OTWorkplace​, click “Project start…” and name the new project.
c. To calculate the factorial typology, under ​OTWorkplace​, click ​Factorial typology

> FacType Calculate​.

Conclusion
● SPOT makes it easy to quickly create complete violation tableaux for an OT analysis of

syntax-prosody interactions, which can be further analyzed using other OT software.
● Questions about how to use SPOT for a particular analysis? Put them in the Q&A box, or

contact me later via email (​jbellik@ucsc.edu​) or by submitting an issue on Github
(​https://github.com/syntax-prosody-ot/main/issues​).

9

https://sites.google.com/site/otworkplace/
mailto:jbellik@ucsc.ed
https://github.com/syntax-prosody-ot/main/issues

Supplementary materials

Built-in system of Msp.Asp
Shortcut: This system and a number of other related systems can be found in SPOT in the ​Built
in systems​ menu at the top of the page. Msp.Asp is listed there as ​✓ Japanese: Match SP, Align
SP (Bellik, Ito, Kalivoda & Mester to appear)​.

System Msp.Asp at a glance
(5) Msp.Asp.GEN

(a) Inputs​: Binary-branching syntactic trees on terminal strings of 1-4 nodes, where
terminal nodes are syntactic words X​0​, non-terminal nodes are syntactic phrases
XP. The orthographic representation of the bracketing structure imposes a linear
order on the leaves.

(b) Outputs​: All possible phonological phrases for which
(i) Every syntactic word X​0​ in the input is mapped to an output phonological

word ω. Linear order is preserved.
(ii) All non-terminal nodes are of category φ (represented by parentheses).

(iii) Output representations are trees with ordered leaves.
(iv) The child of a unary-branching φ must be a ω.

(6) Msp.Asp.CON
(a) Mapping constraints

(i) Match(XP,φ)
Assign one violation for every node of category XP in the syntactic tree
such that there is no node of category φ in the prosodic tree that dominates
all and only the same terminal nodes.

(ii) Align(XP,L,φ,L)
Assign a violation for every syntactic node of category XP whose left edge
is not aligned with the left edge of a prosodic node of category φ.

(iii) Align(XP,R,φ,R)
Assign a violation for every syntactic node of category XP whose right
edge is not aligned with the right edge of a prosodic node of category φ.

10

(b) Markedness constraints
(i) BinMax(φ,branches)

Assign one violation for every node of category φ in the prosodic tree that
has more than two children.

(ii) BinMin(φ,branches)
Assign one violation for every node of category φ in the prosodic tree that
has less than two children.

(iii) BinMax(φ,ω)
Assign one violation for every node of category φ in the prosodic tree that
dominates more than two nodes of category ω.

What about the other inputs in Msp.Asp?
Msp.Asp as defined above has 7 inputs, those in the 3w and 4w columns. Logically we could
also expand its input set to include analogous trees with one and two terminals, those in the 1w
and 2w columns:

Note: the number of inputs on ​n​ words is Catalan number ​n​–1. The ​n​th Catalan number is
(2​n​)!/(​n​+1)!​n​! for n≥0, and 1 for n=0 (Wikipedia: ​Catalan numbers​).

We have calculated Msp.Asp with all of the inputs, and its FacTyp contains the 14 languages we
just encountered with only three inputs (4wR, 4wM, 4wL). By removing inputs, we show that [a
[b [c d]]], [[[a b] c] d], and one of either [a [[b c] d]] or [[a [b c]] d] are a ​universal support​ for
Msp.Asp. As for the other inputs:

11

1w 2w 3w 4w

[a] [a b] [a [b c]]
[[a b] c]

[a [b [c d]]]
[a [[b c] d]]
[[a b] [c d]]
[[a [b c]] d]
[[[a b] c] d]

Redundant Input Comment

[a] Msp.Asp.GEN admits only one candidate for
this cset: [a]→(a)

[a b] Only 1 candidate in the cset is an optimum:
[a b]→(a b)

[a [b c]] Only 1 candidate in the cset is an optimum:
[a [b c]]→(a (b c))

https://en.wikipedia.org/wiki/Catalan_number

References
Bane, Max & Jason Riggle. 2012. Consequences of candidate omission. ​Linguistic Inquiry​ 43(4).

695–706.
Bellik, Jennifer, Ozan Bellik, and Nick Kalivoda. 2015-2021. Syntax-Prosody in Optimality

Theory (SPOT). Javascript application. ​http://spot.sites.ucsc.edu​. Codebase at
https://github.com/syntax-prosody-ot​.

Bellik, Jennifer, Junko Ito, Nick Kalivoda, and Armin Mester. To appear. Matching and
Alignment. In Haruo Kubozono, Junko Ito, and Armin Mester: ​Prosody and Prosodic
Interfaces.​ Oxford University Press.

Karttunen, Lauri. 2006. The insufficiency of paper-and-pencil linguistics: The case of Finnish
prosody. In Miriam Butt, Mary Dalrymple & Tracy Holloway King (eds.), ​Intelligent
linguistic architectures: Variations on themes by Ronald M. Kaplan​, 287–300. Stanford,
CA: CSLI Publications.

Kubozono, Haruo. 1989. Syntactic and Rhythmic Effects on Downstep in Japanese. ​Phonology​,
30(1), 39–67.

Prince, Alan. 2017. What is OT? Slides.
http://roa.rutgers.edu/content/article/files/1513_prince_4.pdf

–. 2017. OT Checklist. ​http://roa.rutgers.edu/content/article/files/1615_prince_2.pdf
Prince, Alan, Nazarré Merchant, and Bruce Tesar. 2020. OTWorkplace.

https://sites.google.com/site/otworkplace/

12

[[a b] c] Only 1 candidate in the cset is an optimum:
[[a b] c]→((a b) c)

[[a b] [c d]] Only 1 candidate in the cset is an optimum:
[[a b] [c d]]→((a b) (c d))

[[a [b c]] d] In every language, this input behaves the
same way as its counterpart [a [[b c] d]].

Matching case​:
If [a [[b c] d]]→(a ((b c) d)) is optimal,
then [[a [b c]] d]→((a (b c)) d) is optimal.

Squishing case​:
If [a [[b c] d]]→(a (b c) d) is optimal,
then [[a [b c]] d]→(a (b c) d) is optimal.

Rebracketing case​:
If [a [[b c] d]]→((a b) (c d)) is optimal,
then [[a [b c]] d]→((a b) (c d)) is optimal.

http://spot.sites.ucsc.edu/
https://github.com/syntax-prosody-ot
http://roa.rutgers.edu/content/article/files/1513_prince_4.pdf
http://roa.rutgers.edu/content/article/files/1615_prince_2.pdf
https://sites.google.com/site/otworkplace/

